Filtered Topological Hochschild Homology
نویسنده
چکیده
In this paper we examine a certain filtration on topological Hochschild homology. This filtration has the virtue that it respects the cyclic structure of topological Hochschild homology, and therefore it is compatible with the cyclotomic structure used to define topological cyclic homology. As an example we show how the skeleton filtration of a simplicial ring gives rise to spectral sequences similar to the change of ring spectral sequences considered by Pirashvili and Waldhausen in [10].
منابع مشابه
Filtered Topological Cyclic Homology and relative K -theory of nilpotent ideals
In this paper certain filtrations of topological Hochschild homology and topological cyclic homology are examined. As an example we show how the filtration with respect to a nilpotent ideal gives rise to an analog of a theorem of Goodwillie saying that rationally relative K -theory and relative cyclic homology agree. Our variation says that the p-torsion parts agree in a range of degrees. We us...
متن کاملTopological Hochschild Homology of Thom Spectra and the Free Loop Space
We describe the topological Hochschild homology of ring spectra that arise as Thom spectra for loop maps f : X → BF , where BF denotes the classifying space for stable spherical fibrations. To do this, we consider symmetric monoidal models of the category of spaces over BF and corresponding strong symmetric monoidal Thom spectrum functors. Our main result identifies the topological Hochschild h...
متن کاملSymmetric Spectra and Topological Hochschild Homology
A functor is defined which detects stable equivalences of symmetric spectra. As an application, the definition of topological Hochschild homology on symmetric ring spectra using the Hochschild complex is shown to agree with Bökstedt’s original ad hoc definition. In particular, this shows that Bökstedt’s definition is correct even for non-connective, non-convergent symmetric ring spectra. Mathem...
متن کاملOn the Multiplicative Structure of Topological Hochschild Homology
We show that the topological Hochschild homology THH(R) of an En-ring spectrum R is an En−1-ring spectrum. The proof is based on the fact that the tensor product of the operad Ass for monoid structures and the the little n-cubes operad Cn is an En+1-operad, a result which is of independent interest. In 1993 Deligne asked whether the Hochschild cochain complex of an associative ring has a canoni...
متن کاملLocalization Theorems in Topological Hochschild Homology and Topological Cyclic Homology
We construct localization cofiber sequences for the topological Hochschild homology (THH) and topological cyclic homology (TC) of spectral categories. Using a “global” construction of the THH and TC of a scheme in terms of the perfect complexes in a spectrally enriched version of the category of unbounded complexes, the sequences specialize to localization cofiber sequences associated to the in...
متن کامل